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A derivation of the constitutive equations for 
non-equilibrium stationary states from 
extended irreversible thermodynamics 

R M Velasco and L S Garcia-Colint 
Department of Physics, UAM-Iztapalapa, Mexico 13, D F Mexico. 

Received 5 October 1981 

Abstract. A derivation is given of the constitutive equations required for the study of the 
behaviour of a fluid in a stationary state far from equilibrium using the Navier-Stokes 
equations of hydrodynamics. The presence of the external gradients producing such 
stationary states is explicitly accounted for in the hydrodynamic equations. The method 
used in the derivation is based on the theory of extended irreversible thermodynamics. 

1. Introduction 

The generalisation of linear irreversible thermodynamics to cope with problems which 
lie outside its scope, such as the introduction of a finite propagation velocity for elastic 
and thermal disturbances in solids and fluids, and the introduction of nonlinear 
constitutive equations supplementing the information required by the macroscopic 
dynamical model of a given system, has been a subject of recent interest (Cattaneo 
1958, Carrasi and Morro 1972, Gyarmati 1977). In this paper we discuss how one 
can derive the constitutive equations for a binary non-reactive mixture of fluids which 
is brought to a stationary state far from equilibrium by some external agent, using 
the methods of extended irreversible thermodynamics (EIT). The study of systems in 
stationary states far from equilibrium has attracted the attention of many people, 
mainly because their features, such as the spectra of the light dispersed by a fluid, are 
considerably different from those characterising the system when it is in a state not 
far from equilibrium (Kirkpatrick et a f  1980, Ronis and Putterman 1980, Tremblay 
et a f  1980, Van der Zwann and Mazur 1980). 

In relation to these questions we have proposed a phenomenological model to 
explain this behaviour which is based on the fluctuating Navier-Stokes equations of 
hydrodynamics, but supplemented by constitutive equations which explicitly contain 
the fact that the external gradient maintaining the stationary state must give rise to 
a privileged direction in the fluid, insofar as the propagation of the corresponding 
flow is concerned (Garcia-Colin and Velasco 1981). With such a model we have 
predicted a change in the Kirchhoff-Stokes formula for the sound absorption in the 
fluid, a modification of Rayleigh’s peak unpredicted so far and the shift in the Brillouin 
peaks already obtained by other authors (Kirkpatrick et af 1980, Tremblay e taf  1981, 
Ronis and Putterman 1980). 
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To keep the paper short but self-contained, § 2 is devoted to the study of the 
non-reactive binary mixture according to EIT, 0 3 contains the derivation of the 
Navier-Stokes equations modified with constitutive equations which have the proper- 
ties mentioned above, and in § 4 we obtain the correlation functions for the fluctuating 
parts of the various fluxes appearing in the model. 

2. The binary mixture in EIT 

Consider a system which is composed of an isotropic fluid containing two chemically 
distinct and inert chemical species. The states of such a fluid will be described in 
terms of the local mass density p ( r ,  t ) ,  the local concentration of any of the species 
c i ( r ,  r ) ,  ( i  = 1,2),  c1 + c 2  = 1, the local specific internal energy density u(r,  r )  and the 
local baricentric velocity u(r, t ) .  The time evolution of these local variables is given 
by the well known conservation equations together with Gibbs’ relation as stated by 
the local equilibrium assumption. Combination of all these equations leads to an 
entropy balance equation with well defined, though not unique, expressions for the 
entropy flux and the local entropy production (de Groot and Mazur 1962). To obtain 
a complete set of equations one must introduce the constitutive equations relating 
the fluxes to the gradients of the local densities, the thermodynamic forces. The 
solution to any given physical situation of a chosen system depends only on the 
knowledge of the initial conditions of the state variables and the boundary conditions. 

In EIT one considers as independent variables not only the local densities required 
by linear irreversible thermodynamics but also the fluxes, namely, the diffusion flux 
Jd, the traceless part of the viscous tensor 8, its trace 9 and J = J~ - f l d  where is 
the heat flux and CL the chemical potential of the mixture. This ansatz leads to the 
generalisation of the Gibbs relation which now has the following form (Jou et a1 
1979b, Lebon er a1 1980): 

where p and T are the local equilibrium analogues of pressure and temperature, 
respectively, c is the independent concentration and ao, a l ,  di.2 and a3 are functions 
of the algebraic invariants which can be constructed from the independent variables, 
of the independent variables themselves and have the indicated tensorial nature. 

Thus 

a1 =a1dt-Dl3Jd, a0 = ffOl8, ( 2 )  

di.2 = a 2 1 B 1  a 3  = a30Jca31Jd7 

where the aij are scalar functions of p ,  U and c and are evaluated at equilibrium. 
Following the prescription of EIT, one can now use equations (1) and (2) together 

with the conservation equations for p, U and c to derive formally an entropy balance 
equation with specific equations for J, and U. However, in these quantities the unknown 
time rates of change for the fluxes will appear. The main task of the theory is to find 
a prescription that allows the computation of such quantities. This is done by recalling 
that J,  and u must be a vector and a scalar in the new space of variables in which 
the Pfaffian for ds, namely equation (1) is defined. By restricting ourselves to terms 
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which are at most of second order in the fluxes, the vector J, is of the form 

Js=(@OO+pOl$) J+p l& *J+@30+p31$ . ) Jd+p4& ' J d + .  - * (3) 
where the scalar coefficients pii = &(p, U, c) are equilibrium quantities. In order that 
J, defined in equation (3) reduce to the well known expression for the linear case, 
namely that J, = T-'Jq, we choose Boo = T-' and p 3 0  = 0. 

On the other hand, the most general form for the scalar U is 

(+ = x * J+x& +4%2 I$ + x d  J d  (4) 

where X ,  XO, 4 % ~  and x d  play the role of the generalised thermodynamic forces which 
are obtained when one substitutes the conservation equations into equation (1) and 
adds to the resulting expression the term div Js obtained form equation (3). Factorising 
the result as suggested by equation (4) leads immediately to the result that 

On the other hand, these same quantities may also be constructed using the same 
symmetry arguments as before, taking for each one of them the most general form 
which is consistent with their tensorial character. Then, 

X d = Y 3 d d - Y 3 i $ J d + Y 3 $  *Jd+Y33J+Y34$J+Y35$ . J ,  (12) 

and the y,, are scalar functions of p, U and c evaluated at equilibirum. 
Since the set of equations (5 ) - (8 )  and (9)-( 12) gives two alternative expressions 

for each of the quantities X ,  Xo, d2 and x d  respectively, equating them leads us to 
the sought equations describing the time rate of change of the various fluxes. 

These expressions are 
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where we have omitted all the terms V p i i  which are irrelevant. This requirement in 
fact is equivalent to the assumption that the transport coefficients of the mixture are 
independent of the position coordinates. 

It is pertinent to indicate here that if in equations (13)-(16) one neglects all terms 
which are of second order, one obtains in the stationary state the well known 
constitutive equations of linear irreversible thermodynamics. This allows the 
identification of the well known transport coefficients so that A = l /yl ,T2 is the thermal 
conductivity, 5 = l / yo lT  is the bulk viscosity, 2t7 = 1/yz0T is the shear viscosity, 

the diffusion coefficient and 

the thermodiffusion ratio. Since at this order in the approximation Onsager's relations 
are valid, we see that y33 = ~ 1 3 .  

3. The constitutive equations for a stationary state 

Let us now consider that the binary fluid mixture is in a stationary state far from 
equilibrium to which it has been driven by the action of an external agent. For 
instance, one could think of a state produced by the action of a thermal gradient 
(VT)( ] ,  a constant shear rate % or a concentration gradient ( V C ) ~ ) .  In such a state the 
following conditions have to be obeyed, namely that 

These equations will lead us to new constitutive equations which are no longer 
linear ones since they will contain terms which are second-order derivatives of the 
independent variables. That this is the case can be seen through the following 
argument. In the presence of the external gradient the fluxes may be separated into 
two parts, one containing the fluxes present in the system due to the external gradient, 
which we shall denote by a superscript (O), and which keep the system in the stationary 
state, and the ordinary contributions which will be denoted by the superscript ( I ) .  Thus 

(18) 3 = j ( n ) + j ( i ) ,  g = g'"' + $ ( I ) ,  

J = J ( O ) + J 1 1 )  9 Jd=JA") + J A 1 ) .  
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The fluxes with the superscript ( O )  define the reference state of the system and are 
therefore regarded as quantities of order zero, whereas the other contributions are 
first-order quantities. Substituting equation (18) back into equations (13)-( 16) and 
keeping only linear terms with respect to the stationary state, we obtain that 

and, 

We now reduce the set of equations (19)-(22) to the Navier-Stokes regime but 
for the stationary state. Physically, this means that we shall only consider all those 
quantities which are of first order with respect to the local equilibrium state which 
has been established around the stationary state. Therefore the last four terms in 
equation (1) are set equal to zero and in equations (19)-(22) the left-hand members 
are zero. Also all those terms in these equations which are of second order, namely 
those that involve spatial derivatives of the first-order fluxes, are neglected. For the 
specific case in which the stationary state is produced by a fixed temperature gradient 
and the system has only a single component so that p = 0, we readily obtain that 

f " ' =  -gv . u ( l )  +li(VT)o * V(l/T)"', 

9") = -2~(Vfi(l))'  +2~l [ (VT)o~( l /T) '"] ' ,  (23) 
J:" = -A(VT)'"-A1(V In T)oV * u"'-A2(V In T)o (Vf i ( l ) ) s ,  

where gl ,  ql, A I ,  and A 2  are the new transport coefficients. In arriving at equations 
(23) use has been made of the fact that to lowest order in the gradients J = AVT-' 
and that VT = (VT),+(VT)'". Also, in this case $(')= -2q,&= 0. 
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For the case in which the stationary state is produced by a constant external shear 
A rate, one obtains that 

( 1 )  9 = -gv U(')- L3A : (<U)', 

3 = -2r/(VVo"')' - 2L5(A V V o ( l ) ) S  - LIAV ' U(!), ( 2 4 )  
J:' = - A V T " ) - L ~ A  . VT") .  

Once more, the fact that to lowest order J = AVT-I and 3 = -277(<u)' has been 
used in the derivation of equation (24), and L 1 ,  L2,  L3 and L5 are the new transport 
coefficients which couple the different effects arising from the presence of the external 
gradient. As in any phenomenological theory, the new transport coefficients are to 
be determined either through experiment or using a microscopic theory. The sets of 
equations (23)  and (24) constitute the basis of the treatment for fluids in stationary 
states far from equilibrium presented by Garcia-Colin and Velasco (1982). 

Although in this section we have considered the specific example of a single 
component fluid, it is straightforward to see that the method is readily applicable to 
different types of stationary states far from equilibrium. 

4. Fluctuating hydrodynamics 

In this section we shall apply the theory of hydrodynamic fluctuations as presented 
by Landau and Lifshitz (1959) (Jou and Casas-Vazquez 1980) to the modified 
Navier-Stokes model described in 9 3 .  In particular, we shall consider the stationary 
states arising from the presence of an external temperature gradient (VT),)  and an 
external rate of shear A. 

In Landau's theory one begins with an equation relating the thermodynamic forces 
to the corresponding fluxes in which the fluctuating part of the latter ones is explicitly 
accounted for. Thus, if i, is a flux and xb the corresponding force, 

where y o  is the fluctuating part of 1, and yob are the constant elements of the transport 
matrix. Clearly, if an average of ( 2 5 )  is performed over a non-equilibrium ensemble, 
then it is assumed that 

(Y") = 0, ( y a ( t ' ) y b ( t ) )  = ( Y a b  + Y b a ) 6 ( t -  ('1. ( 2 6 )  

Let us now apply these results to equations ( 2 3 ) .  Adding to each one of the 
corresponding equations their fluctuating components, T, & and g respectively, and 
using equations (25)  and (26), we find that 

2 
(&iI(r, t)&/m(r* t ' ) )  = 2~T(r)(ai/S,m + 6,/sim -jSijS/m)G(r -r ' )6( t  - t ' ) ,  

( n ( r ,  t ) T ( r ' ,  t ' ) )=25T(r )S ( r - r ' )6 ( t -  t ' ) ,  
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It is worthwhile pointing out that the new transport coefficients which appear in 
the constitutive equations (23) and (24) are explicitly contained in these results as 
well as the external gradient. This is precisely the reason why the intensity of the 
Brillouin-Rayleigh spectra for the dispersed light by the fluid is modified. 

To conclude this paper we would like to emphasise that EIT provides a systematic 
way of constructing constitutive equations which are useful in the study of stationary 
states in systems far from equilibrium. These constitutive equations modify substan- 
tially the behaviour of the system, since they include all the pertinent transport 
coefficients coupling the external gradients, which also appear explicitly, with the 
other isotropically homogeneous thermodynamic forces. Furthermore, these new 
transport coefficients can be measured by studying the sound dispersion and the light 
scattering by the fluid. 
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